Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor.
نویسندگان
چکیده
Infusions of antigen-specific T cells have yielded therapeutic responses in patients with pathogens and tumors. To broaden the clinical application of adoptive immunotherapy against malignancies, investigators have developed robust systems for the genetic modification and characterization of T cells expressing introduced chimeric antigen receptors (CARs) to redirect specificity. Human trials are under way in patients with aggressive malignancies to test the hypothesis that manipulating the recipient and reprogramming T cells before adoptive transfer may improve their therapeutic effect. These examples of personalized medicine infuse T cells designed to meet patients' needs by redirecting their specificity to target molecular determinants on the underlying malignancy. The generation of clinical grade CAR(+) T cells is an example of bench-to-bedside translational science that has been accomplished using investigator-initiated trials operating largely without industry support. The next-generation trials will deliver designer T cells with improved homing, CAR-mediated signaling, and replicative potential, as investigators move from the bedside to the bench and back again.
منابع مشابه
Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system.
Genetic modification of clinical-grade T cells is undertaken to augment function, including redirecting specificity for desired antigen. We and others have introduced a chimeric antigen receptor (CAR) to enable T cells to recognize lineage-specific tumor antigen, such as CD19, and early-phase human trials are currently assessing safety and feasibility. However, a significant barrier to next-gen...
متن کاملAdvancing Chimeric Antigen Receptor-Engineered T-Cell Immunotherapy Using Genome Editing Technologies: Challenges and Future Prospects
Chimeric antigen receptor engineered-T (CAR-T) cells also named as living drugs, have been recently known as a breakthrough technology and were applied as an adoptive immunotherapy against different types of cancer. They also attracted widespread interest because of the success of B-cell malignancy therapy achieved by anti-CD19 CAR-T cells. Current genetic toolbox enabled the synthesis of CARs ...
متن کاملEngineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor
Background: Recently, modification of T cells with chimeric antigen receptor (CAR) has been an attractive approach for adoptive immunotherapy of cancers. Typically, CARs contain a single-chain variable domain fragment (scFv). Most often, scfvs are derived from a monoclonal antibody of murine origin and may be a trigger for host immune system that leads to the T-cell clearance. Nanobody is a spe...
متن کاملEffect of Anti-CD3/CD28 Dynabeads and Allogeneic PBMCs on Expansion of Anti-MUC1 Chimeric Receptor T Cells
Background and purpose: In recent years, immunotherapy using chimeric antigen receptor T cells (CAR T cells) has been considered as a novel and promising treatment for some diseases, especially cancer. The CAR T cell production is a multi-step, complex, time-consuming, and costly process. One of the most important steps in production of CAR T cells is expansion of these cells at appropriate num...
متن کاملAnti-melanoma activity of T cells redirected with a TCR-like chimeric antigen receptor
Genetically modified T cells to recognize tumor-associated antigens by transgenic TCRs or chimeric antigen receptors (CAR) have been successfully applied in clinical trials. However, the disadvantages of either TCR mismatching or the requirement of a surface tumor antigen limit their wider applications in adoptive T cell therapy. A TCR-like chimeric receptor, specific for the melanoma-related g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 116 7 شماره
صفحات -
تاریخ انتشار 2010